Temporal Pattern Generation Using Hidden Markov Model Based Unsupervised Classification

نویسندگان

  • Cen Li
  • Gautam Biswas
چکیده

This paper describes a clustering methodology for temporal data using hidden Markov model(HMM) representation. The proposed method improves upon existing HMM based clustering methods in two ways: (i) it enables HMMs to dynamically change its model structure to obtain a better t model for data during clustering process, and (ii) it provides objective criterion function to automatically select the clustering partition. The algorithm is presented in terms of four nested levels of searches: (i) the search for the number of clusters in a partition, (ii) the search for the structure for a xed sized partition, (iii) the search for the HMM structure for each cluster, and (iv) the search for the parameter values for each HMM. Preliminary experiments with artiicially generated data demonstrate the eeectiveness of the proposed methodology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مدل سازی فضایی-زمانی وقوع و مقدار بارش زمستانه در گستره ایران با استفاده از مدل مارکف پنهان

Multi site modeling of rainfall is one of the most important issues in environmental sciences especially in watershed management. For this purpose, different statistical models have been developed which involve spatial approaches in simulation and modeling of daily rainfall values. The hidden Markov is one of the multi-site daily rainfall models which in addition to simulation of daily rainfall...

متن کامل

Supervised and unsupervised classification approaches for human activity recognition using body-mounted sensors

In this paper, the activity recognition problem from 3-d acceleration data measured with body-worn accelerometers is formulated as a problem of multidimensional time series segmentation and classification. More specifically, the proposed approach uses a statistical model based on Multiple Hidden Markov Model Regression (MHMMR) to automatically analyze the human activity. The method takes into a...

متن کامل

A new approach to wind turbine power generation forecasting, using weather radar data based on Hidden Markov Model

The wind is one of the most important and affecting phenomena and is known as one of the significant clean resources of energy. Apart from other atmospheric parameters, the wind has complex behavior and intermittent characteristics. Local phenomena can be accompanied by the wind, which is strong, non-predicted, and damaging.  Weather radars are capable of detecting and displaying storm-related ...

متن کامل

Data Driven Profiling of Dynamic System Behavior using Hidden Markov Model based Combined Unsupervised and Supervised Classification

Dynamic systems are often best characterized by a combination of static and temporal features, with the static features describing time-invariant properties of the system, and the temporal features capturing dynamic aspects of the system. Our goal is to construct context based temporal behavior models of dynamic systems using information from both types of features. Our dynamic system profiling...

متن کامل

A Markov random field model for mode detection in cluster analysis

A statistical clustering approach is proposed, based on Markov random field models. A discrete field derived from the raw data set is considered as a field of measures. A hidden field, computed using a new potential function, is used to detect the modes that correspond to domains of high local concentrations of observations. Results obtained on artificially generated and real data sets demonstr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999